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Based on an improved parameterized integer relation construction method, a complete algorithm is pro-
posed for finding an exact minimal polynomial from its approximate root. It relies on a study of the error
controlling for its approximation. We provide a sufficient condition on the precision of the approximation,
depending only on the degree and the height of its minimal polynomial. Our result is superior to the existent
error controlling on obtaining an exact rational or algebraic number from its approximation. Moreover,
some applications are presented and compared with the subsistent methods.

Keywords: error controllable algorithm; symbolic–numerical computation; integer relation construction;
minimal polynomial
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1. Introduction

Symbolic–numerical computation is a novel method for solving large-scale problems, which
applies both numerical and symbolic methods in its algorithms and provides a new perspective
of them. Recently, the exact computation by intermediate of floating-point arithmetic has been
an active area of solving the problem of intermediate expression swell in [6,8,9,15,18,20,36].
It can be considered as an error controllable algorithm in [24,27,33]. Of course, it is also a
challenge in symbolic and scientific computing [14,29,31,32]. The aim of this article is to provide
a rigorous and efficient algorithm to reconstruct an exact minimal polynomial from its approximate
root.

Consider the interesting question: suppose we are given an approximate root of an unknown
minimal polynomial with integral coefficients, and two bounds on the degree and size of the
coefficients of the minimal polynomial. Is it possible to infer the exact minimal polynomial?
The question was raised by Manuel Blum in Theoretical Cryptography [17, p. 243]. Moreover,
in the reference [34, p. 119], the authors indicated that symbolic computation is substituted
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2334 X. Qin et al.

for numerical computation in order to reduce memory consumption, which is a practical and
interesting numerical method. Kannan et al. (KLL) answered the question in [16,17]. However,
their technique is based on the Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm, which
is quite unstable in numerical computations [4]. In [13], Just et al. presented an algorithm for
finding an integer relation on n real numbers using the LLL-lattice basis reduction technique,
which needed the high precision. The built-in function PolynomialTools:-MinimalPolynomial()
in Maple, which finds the minimal polynomial for an approximate root, was implemented using
the same technique (see Maple’s help). Fieker and Friedrichs [11] used integral LLL-reduction to
reconstruct a solution by modulo a suitable ideal. Their approach did not involve how to obtain
exact minimal polynomial by approximation. Moreover, Chèze and Galligo (CG) applied Number
Theory techniques and provided sharp bounds to obtain exact absolute polynomial factorization
from an approximate factor in [5,6]. However, their results rely on finding a primitive element,
the procedure of which is very complicated. In this article, we propose an efficient approach to
remedy these drawbacks.

In this article, a new algorithm is presented for finding an exact minimal polynomial from its
approximation. It is based on the improved parameterized integer relation construction algorithm
PSLQ(τ ) [12], whose stability admits an efficient implementation with lower run times on average
than the existing algorithms, and can be used to prove that relation bounds obtained from computer
runs using it are numerically accurate. Based on the PSLQ, one can find algebraic relations, such
as [1–4], whereas these literatures did not involve the minimal polynomial finding in detail. The
other function identify in Maple, which finds a closed form for a decimal approximation of a
number, was implemented using the integer relation construction algorithm. However, the choice
of Digits of approximate value is fairly arbitrary [3]. In contrast, we fully analyse numerical
behaviour of an approximate to exact value and give the number of Digits of approximate value,
which are required to exact results. The work is regarded as further research of [35]. Solving the
problem can be described as follows.

Given an approximate value α̃ at arbitrary accuracy of an unknown algebraic number, and
obtaining the upper bound degree n of the algebraic number and an upper bound N of its height
on minimal polynomial in advance, the problem will be solved in two steps. First, we discuss how
much the error ε can be, so that we can reconstruct the algebraic number α from its approximation
α̃ with |α − α̃| < ε. Of course, ε is a function in n and N . Second, we give an algorithm to compute
the minimal polynomial of the algebraic number.

Our method can be generalized to transcendental numbers of the forms sin−1(α), log(α), etc.,
where α is algebraic. We also propose a simple polynomial-time algorithm to factor multivariate
polynomials with rational coefficients, and provide a natural, efficient technique to the minimal
polynomial representation. The basic idea is taken from [17]. However, the efficiency of our
method is improved greatly.

This article is the final journal version of [25], which adds to the main contents as follows:
re-proves the main results, analyses the complexity of our algorithm, compares with four different
algorithms, and extends the applications of our method.

Our main contributions in this article are the following. Based on the remarkable parameterized
integer relation construction algorithm, we have completely solved the problem of reconstruction
of the general real algebraic numbers, including the unique conditions and the upper bound of
error controlling, and propose an algorithm to obtain exact minimal polynomial from its approx-
imate value. The algorithm is efficient and numerically stable. Moreover, some applications are
presented.

The rest of this article is organized as follows. Section 2 illustrates the improved parameterized
integer relation construction algorithm. Section 3 discusses how to reconstruct minimal polyno-
mial (RMP), and gives some applications and small examples in detail. Section 4 gives some
experimental results. The final section concludes this article.
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2. Preliminaries

In this section, we first give some notations, and a brief introduction on integer relation problems.
After that an improved parameterized integer relation construction algorithm is also reviewed.

2.1 Notations

Throughout this article, Z, Q, and R denote the set of the integers, rationals, and reals, respectively.
O(Rn) is the corresponding system of ordinary reals, U(n, Z) the group of unitary matrices over Z,
GL(n, Z) the group of unimodular matrices with entries in the Z. For c ∈ R, �c� = �c + 1

2�. The
ring of polynomials with integral coefficients will be denoted as Z[x]. The content of a polynomial
p(x) in Z[x] is the greatest common divisor of its coefficients. A polynomial in Z[x] is primitive if
its content is 1. A polynomial p(x) has degree d if p(x) = ∑d

i=0 pixi with pd �= 0. The length |p|
of p(x) = ∑d

i=0 pixi is the Euclidean length of the vector (p0, p1, . . . , pd); the height |p|∞ of p(x)
is the L∞-norm of the vector (p0, p1, . . . , pd), so |p|∞ = max0≤i≤d |pi|. An algebraic number is a
root of a polynomial with integral coefficients. The minimal polynomial of an algebraic number
α is the irreducible polynomial in Z[x] satisfied by α. The minimal polynomial is unique up to
units in Z. The degree and height of an algebraic number are the degree and height of its minimal
polynomial, respectively.

2.2 Integer relation algorithm

There exists an integer relation amongst the numbers x1, x2, . . . , xn if there are integers
a1, a2, . . . , an, not all zero, such that

∑n
i=1 aixi = 0. For the vector x = [x1, x2, . . . , xn]T, the

nonzero vector a = [a1, a2, . . . , an] ∈ Zn is an integer relation for x if a · x = 0.
In order to introduce the integer relation algorithm, we recall some useful definitions and

theorems [4,12]:

Definition 2.1 For simplicity, defined by the vector x = [x1, x2, . . . , xn]T ∈ Rn for the rest of
this article, and all the bold variates are represented to the vectors. Define x⊥ to be the set of all
vectors in Rn orthogonal to x.

Definition 2.2 (Mx) Assume x has norm |x| = 1. Let O(Rn) ∩ x⊥be the discrete lattice of
integral relations for x. Define Mx > 0 to be the smallest norm of any relation for x in this
lattice.

Definition 2.3 (Hx) Assume x has norm |x| = 1. Furthermore, suppose that no coordinate entry
of x is zero, that is, xj �= 0 for 1 ≤ j ≤ n(otherwise x has an immediate and obvious integral
relation). For 1 ≤ j ≤ n define the partial sums

s2
j =

∑
j≤k≤n

x2
k .

Given such a unit vector x, define the n × (n − 1) lower trapezoidal matrix Hx = (hi,j) by

hi,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if 1 ≤ i < j ≤ n − 1,
si+1

si
if 1 ≤ i = j ≤ n − 1,

−xixj

(sjsj+1)
if 1 ≤ j < i ≤ n.

Note that hi,j is scale invariant.
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2336 X. Qin et al.

Theorem 2.4 Let x �= 0 ∈ Rn. Suppose that for any relation m of x and for any matrix A ∈
GL(n, Z), there exists a unitary matrix Q∈ U(n − 1, Z) such that H = AHxQ is lower trapezoidal
and all of the diagonal elements of H satisfy hj,j �= 0. Then,

1

max1≤j≤n−1 |hj,j| = min
1≤j≤n−1

1

|hj,j| ≤ |m|.

Proof See Theorem 1 of [12]. �

Remark 2.5 The inequality of Theorem 2.4 offers an increasing lower bound on the size of any
possible relation. Theorem 2.4 can be used with any algorithm that produces GL(n, Z) matrices.
Any GL(n, Z) matrix A whatsoever can be put into Theorem 2.4.

Theorem 2.6 Assume real numbers, n ≥ 2, τ > 1, γ > 2/
√

3, and that 0 �= x ∈ Rn have integer
relations. Let Mx be the least norm of relations for x. Then, PSLQ(τ ) will find some integer relation
for x in no more than (

n
2

)
log(γ n−1Mx)

log τ

iterations.

Proof See Theorem 2 of [12]. �

Theorem 2.7 Let Mx be the smallest possible norm of any relation for x. Let m be any relation
found by PSLQ(τ ). For all γ > 2/

√
3

|m| ≤ γ n−2Mx.

Proof See Theorem 3 of [12]. �

Remark 2.8 For n = 2, Theorem 2.7 proves that any relation 0 �= m ∈ O(R2) found has norm
|m| = Mx. In other words, PSLQ(τ ) finds a shortest relation. For real numbers this corresponds
to the case of the Euclidean algorithm.

Theorem 2.4 suggests a strategy to construct a relation finding algorithm. The key step is to
find a way to reduce the norm of the matrix Hx by multiplication by some unimodular A on the
left. The following modified Hermite reduction can achieve it.

Algorithm 2.1 Modified Hermite reduction
Input: a lower trapezoidal matrix Hx = (hi,j) ∈ Rn×(n−1) with hj,j �= 0.
Output: a reducing matrix D of Hx.
(1) D := In

(2) for i from 2 to n do
(3) for j from i − 1 by −1 to 1 do
(4) q := �hi,j/hj,j�
(5) for k from 1 to j do
(6) hi,k := hi,k − qhj,k

(7) for k from 1 to n do
(8) di,k := di,k − qdj,k

(9) return the n × n matrix D.
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If Algorithm 2.1 outputs D for an n × (n − 1) matrix Hx, we say that DHx is the modified Hermite
reduction of Hx and that D is the reducing matrix of Hx. This reduction develops the left multiplying
modified Hermite reducing matrix D.

Hermite reduction is also presented (see [12], Definition 3), and is equivalent to modified
Hermite reduction for a lower triangular matrix Hx with hj,j �= 0 (see [12, Lemma 3]). Both
equivalent reductions have the following properties (see [12, Lemma 4]):

(i) The reducing matrix D ∈ GL(n, Z).
(ii) For all k > i, the modified Hermite reduced matrix H ′ = (h′

i,j) = DHx satisfies |h′
k,i| ≤

|h′
i,i|/2 = |hi,i|/2.

Based on Algorithm 2.1 and the theorems above, and the existence of a parameter γ > 2/
√

3,
an algorithm for obtaining the integer relation can be designed as follows:

Algorithm 2.2 Parameterized integer relation construction
Input: (x1, x2, . . . , xn) = x ∈ Rn, and the parameter γ > 2/

√
3.

Output: either output an integer relation for x or give a lower bound N on.
(1) Initiation. Compute the hyperplane matrix Hx by Definition 2.3, set H := Hx, A := In, B := In.
(2) Reduction. Call Algorithm 2.1 to reduce H producing the reducing matrix D ∈ GL(n, Z). Set

x := xD−1, H := DH , A := DA, B := BD−1.
(3) loop
(4) Exchange. Let H = (hi,j). Choose an integer r such that γ r |hr,r | ≥ γ i|hi,i| for all 1 ≤ i ≤

n − 1. Define the permutation matrix R to be the identity matrix with the r and r + 1 rows
exchanged. Update x := xR, H := RH , A := RA, B := BR.

(5) Corner. Let

α := hr,r , β := hr+1,r ,

λ := hr+1,r+1, δ :=
√

β2 + λ2.

Let Q := In−1. If r < n − 1, then change the submatrix of Q to consist of the rth and (r + 1)th

rows of columns r and r + 1 be

(
β/δ −λ/δ

λ/δ β/δ

)
.

Update H := HQ.
(6) Reduction. CallAlgorithm 2.1 to reduce H producing D. Update x := xD−1, H := DH, A :=

DA, B := BD−1.
(7) Compute N := 1/ max1≤j≤n−1|hj,j|. Then there exists no integer relation whose Euclidean

norm is less than N.
(8) if xj = 0 for some 1 ≤ j ≤ n, or hn−1,n−1 = 0 then
(9) return the corresponding integer relation for x.
(10) end loop

Remark 2.9 The basic ideas of Algorithms 2.1, 2.2 are from the literature [12]. However, they
only gave the definition styles. In this article, we give the equivalent styles and improve the
Algorithm 2.2 for introducing a lower bound N .

By Algorithm 2.2, we can find the integer relation m of the vector x = (1, α̃, α̃2, . . . , α̃n) by
error controlling. So, we get a nonzero polynomial of degree n, which denotes G(x) for the rest
of this article, that is,

G(x) = m · (1, x, x2, . . . , xn)T. (1)

Our main task is to show that polynomial (1) is uniquely determined under assumptions, and
discuss the controlling error in Algorithm 2.2 in the next section.
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3. RMP from its approximation

In this section, we will solve the following problem. Given a floating number α̃, which is an
approximation of unknown algebraic number α, how do we obtain its exact minimal polynomial?
At first, we state some lemmas as follows:

Lemma 3.1 Let f be a nonzero polynomial in Z[x] of degree n. If ε = max1≤i≤n |αi − α̃i|1, then

|f (α) − f (α̃)| ≤ ε · n · |f |∞. (2)

Proof Clear. �

Lemma 3.2 Let h and g be two nonzero polynomials in Z[x] of degree n and m, respectively, and
let α ∈ R be a zero of h with |α| ≤ 1. If h is irreducible and g(α) �= 0, then

|g(α)| ≥ n−1 · |h|−m · |g|1−n. (3)

Proof See Proposition (1.6) of [17]. Without loss of generality suppose that |α| ≤ 1. If |α| > 1,
the lemma also holds. We only need a simple transformation by substituting x with 1/x, then do
xn · h(1/x) for a polynomial, the height of which is constant. �

Remark 3.3 From Lemma 3.2, we can know the following facts: if |g(α)| < n−1 · |h|−m · |g|1−n,
then g(α) = 0.

Corollary 3.4 With the previous notations, if h is irreducible and g(α) �= 0, then

|g(α)| ≥ n−1 · (n + 1)−m/2 · (m + 1)(1−n)/2 · |h|−m
∞ · |g|1−n

∞ . (4)

Proof First notice that |f |2 ≤ (n + 1) · |f |2∞ holds for any polynomial f of degree at most n > 0,
so |f | ≤ √

n + 1 · |f |∞. From Lemma 3.2, we get

|g(α)| ≥ n−1 · (n + 1)−m/2 · (m + 1)(1−n)/2 · |h|−m
∞ · |g|1−n

∞ .

This proves Corollary 3.4. �

Lemma 3.5 Let α̃ be an approximate value to an unknown algebraic number α with degree n > 0
and N be the upper bound on the height of minimal polynomial of α. For any G(x) in Z[x] with
degree n, if

|G(α̃)| < n−1 · (n + 1)−n+1/2 · |G|−n
∞ · N1−n − n · ε · |G|∞,

then

|G(α)| < n−1 · (n + 1)−n+1/2 · |G|−n
∞ · N1−n.

Proof Let α ∈ R where |α| ≤ 1. From Lemma 3.1, we notice that |G(α) − G(α̃)| ≤ ε · n · |G|∞,
and together with

|G(α)| − |G(α̃)| ≤ |G(α) − G(α̃)|,
we get,

|G(α)| ≤ |G(α̃)| + n · ε · |G|∞. (5)

From the assumption of the theorem, since

|G(α̃)| < n−1 · (n + 1)−n+1/2 · |G|−n
∞ · N1−n − n · ε · |G|∞, (6)

combined with Equation (5), we have proved Lemma 3.5. �
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Corollary 3.6 With the previous notations, for any G(x) in Z[x] with degree n, if |G(α)| <

n−1 · (n + 1)−n+1/2 · |G|−n∞ · N1−n, then

G(α) = 0. (7)

The primitive part of polynomial G(x) is the minimal polynomial g(x) of algebraic number α.

Proof by contradiction The proof of Corollary 3.6 is from the fact, there is a gap for a univariate
polynomial which has been assigned constant to variable, that is, there is the lower bound on
the known polynomial. Let α ∈ R where |α| ≤ 1. According to Lemma 3.2, we can get that if
G(α) �= 0, then

|G(α)| ≥ n−1 · (n + 1)−n+1/2 · |G|−n
∞ · N1−n.

From the assumption of the corollary, we have

|G(α)| < n−1 · (n + 1)−n+1/2 · |G|−n
∞ · N1−n.

However, it leads to a contradiction. So, G(α) = 0.
Let G(x) = ∑n

i=0 aixi, which is constructed by the parameterized integer relation construction
algorithm from the vector x = (1, α, α2, . . . , αn). Since algebraic number α with degree n > 0,
according to the definition of minimal polynomial, then the primitive polynomial of G(x), denoted
by pp(G(x)). Hence, pp(G(x)) is just irreducible and equal to g(x). Of course, it is unique.

This proves Corollary 3.6. �

3.1 Obtaining minimal polynomial by approximation

If α is a real number, then by definition α is algebraic if and only if, for some n, the vector

(1, α, α2, . . . , αn) (8)

has an integer relation. Integer relation algorithm can be employed to search for minimal poly-
nomial in a straightforward way by simply feeding it the vector (8) as its input. Let α̃ be
an approximate value belonging to an unknown algebraic number α, considering the vector
v = (1, α̃, α̃2, . . . , α̃n), how to obtain the exact minimal polynomial from its approximate root?
We have the same technique to answer the question from the following theorem.

Theorem 3.7 Let α̃ be an approximate value belonging to an unknown algebraic number α of
degree n > 0. If

ε = |α − α̃| <
1

(n2(n + 1)n−1/2N2n)
, (9)

where N is the upper bound on the height of its minimal polynomial, then G(α) = 0, and the
primitive part of G(x) is its minimal polynomial.

Proof The key states of the proof of Theorem 3.7 is to obtain error controlling ε relationship
with the degree n and height N . Let α ∈ R where |α| ≤ 1. From Corollary 3.6, it is obvious that

G(α) = 0,

if and only if

|G(α)| < n−1 · (n + 1)−n+1/2 · |G|−n
∞ · N1−n. (10)

Under the assumption of the theorem, we get the upper bound of degree n and an approximate
value α̃ belonging to an unknown algebraic number α.
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For substituting the approximate value α̃ in G(x), denoted by G(α̃), there are two cases:
Case 1: G(α̃) �= 0, |G(α̃)| > 0. Here, the G(α̃) is the constant, |G(α̃)| represents its absolute

value. We have the inequality (6) of Lemma 3.5 holds, that is,

0 < n−1 · (n + 1)−n+1/2 · |G|−n
∞ · N1−n − n · ε · |G|∞. (11)

Clearly, the inequality (11) satisfies from the condition (9). This proves the Case 1.
Case 2: G(α̃) = 0. From Lemma 3.1, we have |G(α) − G(α̃)| < n · ε · |G|∞, hence |G(α)| <

n · ε · |G|∞. In order to satisfy condition (10), we only need the following inequality holds,

n · ε · |G|∞ < n−1 · (n + 1)−n+1/2 · |G|−n
∞ · N1−n. (12)

From Theorem 2.7, and Algorithm 2.2 in Step 7, |G|∞ is not more than N . Hence, we replace |G|∞
by N . So, the correctness of the inequality (12) follows from (9). This proves Theorem 3.7. �

Remark 3.8 We consider that ε = |α − α̃| is the general case. For n = 1, Theorem 3.7 proves
that |α − α̃| < 1/(

√
2N2) needed to obtain the exact value in Q, which is superior to |α − α̃| <

1/(2N2) by continued fraction in reference [35]. For n = 2, the result of Theorem 3.7 is consistent
with Theorem 5 of our original works in [25].

It is easiest to appreciate the theorem by seeing how it justifies the following algorithm for
obtaining minimal polynomials from its approximation:

Algorithm 3.1 Reconstructing minimal polynomial
Input: a floating number α̃ to α satisfying (9), upper bounds n and N on the degree and height.
Output: g(x), the minimal polynomial of α.
(1) while 2 ≤ i ≤ n do
(2) x := (1, α̃, . . . , α̃i)

(3) Call Algorithm 2.2 with γ > 2/
√

3 producing an integer relation gi = (g0, g1, . . . , gi) for x
g(x) := the primitive part of

∑i
j=0 gjxj

(4) if height(g(x)) > γ n−2
√

n + 1N then
(5) i := i + 1
(6) else return g(x)
(7) end while

Remark 3.9 The termination of Algorithm 3.1 is from Theorem 2.7. According to Theorem 2.7,
we can know that the norm of obtained relation for x is less than γ n−2

√
n + 1N . Otherwise, it

continues with the next iteration of the loop until the condition is met.

Theorem 3.10 Algorithm 3.1 works correctly as specified and uses O(n4 + n3 log N) arithmetic
operations on floating-point numbers having O(n(log n + log N)) binary bit operations, where n
and N are the degree and height of its minimal polynomial, respectively.

Proof The proof of Algorithm 3.1 on the arithmetic operations refers to the Corollary 2 of [12].
Correctness follows from Theorem 3.7. From Equation (9), at most �lg(n2(n + 1)n−1/2N2n)�
correct decimal digits are needed to guarantee the output is correct. So, the cost of the algorithm
is log ε ∈ O(n(log n + log N)) binary bit operations obviously. �

Table 1 gives a comparison of the digits and complexity of four different minimal polynomial
finding algorithms in the worst case. Since the algorithm in [5] needs to recognize a primitive
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Table 1. Comparison of different minimal polynomial finding algorithms.

Digits Complexity

Just [13] O(n2 + n2 log N) O(n8 log n + n8 log N)

KLL [17] O(n2 + n log N) O(n5 + n4 log N)

CG [5] O
(

log

(
n−1∑
k=1

(
n
k

)
max

j=k+1,...,n

((
n − k
j − k

)
(22nN)j−k

)))
—

RMP O(n(log n + log N)) O(n4 + n3 log N)

element, we do not compare the complexity with it. It seems that a lower complexity can be
achieved by using some new type LLL algorithms, such as H-LLL [22] and L2 [23], but when we
apply these new algorithms to find the minimal polynomial, we have to choose ε as in a similar
formula with Equation (9). Thus, multiple precision arithmetic is inevitable.

3.2 Some applications

In this section, we discuss some applications to the practicalities. The method of obtaining exact
minimal polynomial from an approximate root can be extended to the set of complex numbers
and many applications in computer algebra and science.

This yields a simple factorization algorithm for multivariate polynomials with rational coef-
ficients: we can reduce a multivariate polynomial to a bivariate polynomial using the Hilbert
irreducibility theorem, the basic idea of which was described in [9], and then convert a bivariate
polynomial to a univariate polynomial by substituting an algebraic number of high degree for one
variate in [7] or a transcendental number in [30]. After this substitution, we can get an approxi-
mate root of the univariate polynomial and use our algorithm to find the irreducible polynomial
satisfied by the approximate root, which must then be a factor of the given polynomial. It can find
the bivariate polynomial’s factors, from which the factors of the original multivariate polynomial
can be recovered using Hensel lifting. This is repeated until all the factors are found.

The other application yields an efficient method of converting the rational approximation rep-
resentation to the minimal polynomial representation of an algebraic number. For more details
refer to [26].

We also discuss some applications to some transcendental numbers by using an improved
parameterized integer relation construction method. The form of these transcendental numbers
is sin−1(α), cos−1(α), log(α), etc., where α is an algebraic number. Moreover, a large number
of results were found by using integer relation detection algorithm in the course of research on
multiple sums and quantum field theory in [10].

Suppose β is the principle value of sin−1(α) for some unknown α, which is, however, known
to the algebraic of degree and height at most n and N , respectively. We consider inferring the
minimal polynomial of α from an approximation β̃ to β in the deterministic polynomial time.
We show that if |β − β̃| is at most ε = 1/(n2(n + 1)n−1/2N2n), this can be done. The specific
technique is similar to the method in [17].

Thus, in polynomial time, we can compute from β̃ an approximation α̃ to an unknown algebraic
number α such that |α − α̃| ≤ ε, with ε as above. Now Theorem 3.7 guarantees that we can find
the minimal polynomial of α in polynomial time.

3.3 Some small examples in detail

The first example illuminates how to obtain an exact minimal polynomial by its approximate root.
Example 3.12 uses a simple example to test our algorithm for factoring primitive polynomials
with integral coefficients.
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Example 3.11 Let a known floating number α̃ belonging to some algebraic number α of degree
n = 4, where α̃ = 3.14626436994198, we also know an upper bound of height on its minimal
polynomial N = 10.According toTheorem 3.7, we can get the error ε = 1/(n2(n + 1)n−1/2N2n) =
1/(42 · 57/2 · 108) ≈ 2.2 × 10−12. Calling Algorithm 3.1, if only the floating number α̃, such that
|α − α̃| < ε, then we can get its minimal polynomial g(x) = x4 − 10x2 + 1.

Example 3.12 This example is an application in factoring primitive polynomials over integral
coefficients. For convenience and space-saving purposes, we choose a very simple and primitive
polynomial as follows:

p = x9 − 3x8 + x7 + 2x5 − 9x4 + 7x3 + 10x2 − 7x + 1.

We see the upper bound of coefficients on polynomial p is 10, which has relation with an
upper bound of coefficients of the factors on the primitive polynomial p by Landau-Mignotte
bound [21,28]. Taking N = 5, n = 2 yields ε = 1/(22 · (2 + 1)2−1/2 · 54) = 1/(7500 · √

3) ≈
8.0 × 10−5. Then, we compute the approximate root on x with Maple, and get via [fsolve(p =
0, x)]: S = [2.618033989, 1.250523220, −0.9223475138, 0.3819660113, 0.2192284350].

According to Theorem 3.7, let α̃ = 2.618033989 be an approximate value belonging to some
quadratic algebraic number α. Calling Algorithm 3.1 yields as follows:

p1 = x2 − 3x + 1.

And then, we use the polynomial division to get

p2 = x7 + 2x3 − 3x2 − 4x + 1.

Based on the Eisenstein’s Criterion [19], the p2 is irreducible in Z[x]. So, the p1 and p2 are the
factors of primitive polynomial p.

4. Experimental results

Our algorithms have been implemented as a software package RMP in Maple. The following
examples run in the same platform of Maple 13 under Windows and AMD Athlon(tm) 2.70 GHz,
2.00 GB of main memory. Figure 1 proposes the Digits of approximate values to compare our
method with Just [13], KLL [17], and CG [5].

In Figure 1, we present many examples to compare our new method against three different
algorithms. For each example, we construct the irreducible polynomial with random integral coef-
ficients in the range −100 ≤ coeffs ≤ 100. Here, all the results are obtained under the condition
that γ = 2/

√
3 + 10−15 with the parameterized integer relation construction algorithm.

From Figure 1, we have the observations as follows:

• Just generally works for algebraic number with degrees not higher than 10 within reasonable
digits.

• The Digits of RMP is far less than the LLL-lattice basis reduction technique, such as Just and
KLL. The Digits of RMP is slightly more than that of CG. However, their method must check
whether there is a primitive element. Moreover, in the further work, we would like to consider
improving the error controlling.

In addition, we also construct the irreducible polynomial with random degree in the range 2 ≤
degree ≤ 30. For each example, they have the similar results such as Figure 1.
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Figure 1. Digits of different minimal polynomial finding algorithms. (a) Digits of approximation. (b) Same as
Figure 1(a), with a smaller Digits scaling.

5. Conclusions

In this article, we apply the floating-point parameterized integer relation constructed method and
provide a sufficient condition on the precision of the approximation to its exact minimal polyno-
mial. This previous algorithm relies on the LLL lattice reduction algorithm or Number Theory
techniques. Compared with the subsistent methods, our new approach is more efficient and prac-
tical. Using our algorithm, we have succeeded in factoring polynomial with rational coefficients
and providing an efficient method of converting the rational approximation representation to the
minimal polynomial representation.

In the future, we would like to consider the further research of floating-point integer relation
algorithm and exact multivariate polynomial factorization with rational coefficients by homotopy
continued method. Furthermore, our basic idea can be generalized easily to complex algebraic
numbers.
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Note

1. ε is defined by the same way for the rest of this article.
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